Deep Learning-Based Cryptocurrency Price Prediction in Relation to Trading Volume

Title Slide
Introduction
Methodology
Results
Conclusion
Thank You

Overview

Cryptocurrency:

Total market value is over \$942 billion as of October 2022 [1]

Rapid growth attracts new investors

High volatility puts invested money at risk

Prediction of price is beneficial for individual investors and financial researchers [2]

Trading Volume:

Trading Volume is visibly overlooked as a parameter in Cryptocurrency prediction research [3]

Deep Learning (DL):

Cryptocurrencies do demonstrate non-linear patterns in price behaviour

Hence, machine learning tools perform imperfectly [2]

There is a need for a more powerful prediction tool - DL

DL is a well-known solution for complicated time-series problems [3]

Hybrid DL models:

HDL models outperform DL and ML solution for time-series problems

HDL models state of the art solution for cryptocurrency price prediction [4]

HDL models are relevant to the current research [3]

Transformer Model:

Transformer Models got very popular in past year (ChatGPT)

Outperformed old leaders in most NLP tasks [6]

They were never used solely for cryptocurrency price prediction

Maybe there is a hidden prediction power that can compete with current leaders in time-series forecasting

Title Slide Introduction Methodology Results Conclusion Thank You

Overview

HDL Methodology

Initial:

•	LSTM-GRU and GRU-LSTM [4]	•
•	Initial design [5]	•
•	Output window -> One week	• No
•	Input window experiment -> One week	
•	Normalisation experiment -> Log scaling	

With T Volume:

Same models Different input 7,1 -> 7,2 ormalisation experiment -> Log scaling

Transformers Methodology

- Decoder only transformer.
- Based on concepts from Attention Is All You Need [6], Language Models are Few-Shot Learners [7].
- Input window experiment -> One week
- Normalisation experiment -> Log scaling

Transformers Methodology

Following elements were developed:

- Attention, Multi-Head Attention, Masked Multi-Head Attention
- Feed Forward block
- Residual blocks
- Dropout
- Custom encoding + decoding

Transformers Methodology With Volume

- In HDL input for this part is 2d, for transformer input is a mixture of Closing price and Volume.
- Normalisation used: Log scaling.
- One week input, one week output.
- An accuracy drop was expected and happened.

Log scaling	Volume Log scaling
MSE: 2.6672	MSE: 134.58
MAE: 1.3921	MAE: 8.89
RMSE: 1.6331	RMSE: 11.60
MAPE: 19.06	MAPE: 122.66

Title Slide Introduction Methodology Results Conclusion Thank You

Overview

Results for HDL Models

Min-Max with volume -> drop in accuracy 20-32% across different metrics.

Log scaling with volume -> a noticeable increase in accuracy.

	Log scaling	Volume + Log scaling	Positive % difference
	MSE: 0.0214	MSE: 0.0199	7.2
	MAE: 0.1058	MAE: 0.1055	0.3
LSTM-GRU	RMSE: 0.1463	RMSE: 0.1413	3.4
	MAPE: 1.47	MAPE: 1.46	0.7
	MSE: 0.0253	MSE: 0.0228	10.4
COLLIETM	MAE: 0.1175	MAE: 0.1070	9.4
GRU-LOTM	RMSE: 0.1589	RMSE: 0.1513	4.9
	MAPE: 1.63	MAPE: 1.48	9.6

Results for Transformers Models

Volume had negative impact on performance.

Generally performance with Log scaling normalisation is promising. (In level with HDL models with 2-3 weeks input window)

	Log sca			
TM	MSE: 2.6672			
	MAE: 1.3921			
	RMSE: 1.63			
	MAPE: 19.0			

Conclusion

1 Addition of volume is good for HDL models with Log-scaling normalisation.

2 Addition of volume is harmful in case of Transformer model.

Transformer model has room for improvement.

Further Research

Possible ways to improve Transformer:

- Increasing size of the model
- Training on a larger data set
- Fine-tuning to specific task [7]

Thank You

Presented by Ilia Gershenzon

References

[1] CoinMarketCap, "Cryptocurrency Market Capitalizations | CoinMarketCap," CoinMarketCap, 2019. https://coinmarketcap.com Accessed on 24th October 2022.

[2] E. Pintelas, I. E. Livieris, S. Stavroyiannis, T. Kotsilieris, and P. Pintelas, "Investigating the Problem of Cryptocurrency Price Prediction: A Deep Learning Approach," Artificial Intelligence Applications and Innovations, vol. 584, pp. 99–110, May 2020, doi: 10.1007/978-3-030-49186-4_9. Accessed on 24th October 2022.

[3] A. M. Khedr, I. Arif, P. R. P V, M. El-Bannany, S. M. Alhashmi, and M. Sreedharan, "Cryptocurrency price prediction using traditional statistical and machine-learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, vol. 28, no. 1, pp. 3–34, Jan. 2021, doi: 10.1002/isaf.1488.

Accessed on 23th October 2022.

[4] A. Politis, K. Doka, and N. Koziris, "Ether Price Prediction Using Advanced Deep Learning Models," IEEE Xplore, May 01, 2021. https://ieeexplore.ieee.org/document/9461061/metrics#metrics

Accessed on 22th October 2022.

[5] J. Sen and S. Mehtab, "A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models," International Journal of Business Forecasting and Marketing Intelligence, vol. 6, no. 1, p. 272, 2020, doi: https://doi.org/10.1504/ijbfmi.2020.10038524. [6] A. Vaswani et al., "Attention Is All You Need," arXiv preprint, doi: 10.48550/arXiv.1706.03762, Dec. 2017. Accessed on 10th February 2023.

[7] T. Brown et al., "Language Models are Few-Shot Learners," arXiv preprint, doi: 10.48550/arXiv.2005.14165, Jul. 2020. Accessed: Feb. 12, 2023. [Online]. Available: https://arxiv.org/pdf/2005.14165.pdf

Additional information Triangular mask example

Ilia Gershenzon | BSc. (Hons.) Computer Science | Lancaster University

- element two knows value of itself and element one, etc

[0.33, 0.33, 0.33]

Additional information Encoder decoder example

[234, 327, 473] - alphabet 1 2 3

Ilia Gershenzon | BSc. (Hons.) Computer Science | Lancaster University

[1, 2, 2, 3, 1]

Additional information Masked Multi-Head Attention Attention Multi-Head

Masked